0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Elemental Technologies for Advanced Humid Air Turbine System

[+] Author Affiliations
Hidetoshi Kuroki, Takanori Shibata, Tomomi Koganezawa, Nobuaki Kizuka, Shigeo Hatamiya, Shinya Marushima

Hitachi, Ltd., Hitachi-shi, Japan

Paper No. GT2006-90639, pp. 183-189; 7 pages
doi:10.1115/GT2006-90639
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4239-8
  • Copyright © 2006 by ASME

abstract

The Advanced Humid Air Turbine (AHAT) system improves the thermal efficiency of gas turbine power generation by using a humidifier, a Water Atomization Cooling (WAC) system, and a heat recovery system, thus eliminating the need for an extremely high firing temperature and pressure ratio. The following elemental technologies have been developed to realize the AHAT system: (1) a broad working range and high-efficiency compressor that utilizes the WAC system to reduce compression work, (2) turbine blade cooling techniques that can withstand high heat flux due to high-humidity working gas, and (3) a combustor that achieves both low NOx emissions and a stable flame condition with high-humidity air. A gas turbine equipped with a two-stage radial compressor (with a pressure ratio of 8), two-stage axial turbine, and a reverse-flow type of single-can combustor has been developed based on the elemental technologies described above. A pilot plant that consists of a gas turbine generator, recuperator, humidification tower, water recovery system, WAC system, economizer, and other components is planned to be constructed, with testing slated to begin in October 2006 to validate the performance and reliability of the AHAT system. The expected performance is as follows: thermal efficiency of 43% (LHV), output of 3.6 MW, and NOx emissions of less than 10 ppm at 15% O2. This paper introduces the elemental technologies and the pilot plant to be built for the AHAT system.

Copyright © 2006 by ASME
Topics: Turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In