0

Full Content is available to subscribers

Subscribe/Learn More  >

Three Reactors Chemical Looping Combustion for High Efficiency Electricity Generation With CO2 Capture From Natural Gas

[+] Author Affiliations
Giovanni Lozza, Paolo Chiesa, Matteo Romano

Politecnico di Milano, Milan, Italy

Paolo Savoldelli

CESI, Milan, Italy

Paper No. GT2006-90345, pp. 77-87; 11 pages
doi:10.1115/GT2006-90345
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4239-8
  • Copyright © 2006 by ASME

abstract

Chemical-Looping Combustion (CLC) is a process where fuel oxidation is accomplished by the oxygen carried by a metal oxide, circulating across two reactors: a reduction reactor (reducing the metal oxide by oxidizing the natural gas fuel) and an oxidation reactor (re-oxidizing the metal by reacting with air, a strongly exothermic reaction). The system produces: (i) a stream of oxidation products (CO2 and H2 O), ready for carbon sequestration after water separation and CO2 liquefaction; (ii) a stream of hot air (deprived of some oxygen) used as working fluid of a gas turbine cycle. Due to the moderate temperature (∼850°C) of this stream, sensibly lower than those adopted in commercial gas turbines, the combined cycle arranged around this concept suffers from poor conversion efficiency and, therefore, economics. In the present paper, the basic CLC arrangement is modified by inserting a third reactor in the loop. This reactor, by exploiting an intermediate oxidation state of the circulating metal, produces H2 used as decarbonized fuel to raise the temperature of the air coming from the oxidation reactor, up to the highest value allowed by the modern gas turbine technology (∼1350°C), thus achieving elevated efficiency and specific power output. This paper is aimed to assess the potential of power cycles based on the three reactors (CLC3) arrangement. More specifically, we will discuss the plant configuration, the process optimization and the performance prediction. Results show that the CLC3 system is very promising: the net LHV efficiency of the best configuration exceeds 51%, an outstanding figure for a natural gas power cycle producing liquid, disposal-ready CO2 and negligible NOx emissions. Commercial gas turbines can be easily adapted to operate in the specific conditions of the CLC3 arrangement which, apart from the reactors system, does not require the development of novel technologies and/or high-risk components. The paper also reports a final comparison with a rival technology based on natural gas partial oxidation, water-gas shift reaction and CO2 separation by MDEA absorption. This work has been performed within the research on the Italian Electrical System “Ricerca di Sistema”, Ministerial Decrees of January 26 – 2000, and April 17 – 2001.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In