Full Content is available to subscribers

Subscribe/Learn More  >

Assessing Uncertainties in Friction Factor Measurement as a Tool in Devising Experimental Set-Ups

[+] Author Affiliations
Marco Lorenzini, Gian Luca Morini

Università di Bologna, Bologna, Italy

Torsten Henning

Justus-Liebig University, Giessen, Germany

Juergen J. Brandner

Institute of Microprocessing Engineering-FZK, Karlsruhe, Germany

Paper No. ICNMM2007-30056, pp. 343-349; 7 pages
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5
  • Copyright © 2007 by ASME


The promising performance of microchannels has given rise to intensive research on pressure drop and heat transfer characteristics of flows at the small- validate new ones, experiments need to be conducted, which are particularly difficult given the characteristic dimensions involved and the magnitude of the fluxes to be measured. Although more care has been devoted lately to the design of experiments in terms of control of geometry and boundary conditions, the uncertainties which inevitably affect each measurement do not seem to have been given the proper consideration. Correctly calculating uncertainties not only allow to a correct assessment of the experimental data obtained, but can also be used to decide which measurements need to have the highest precision to achieve a certain accuracy, thus saving money on the others. In this paper, a quantitative criterion is given to assess the accuracy achievable in the determination of the friction factor in the laminar regime for the flow of a fluid in a circular microtube. The influence of the six quantities (pressure drop, outlet pressure, temperature, length, pressure and volume flow rate) measured to determine f in the laminar regime are studied separately and when combined. It is found that at low Reynolds numbers flow rate and pressure drop measurements are determinant for the final value of the uncertainty, while at larger Reynolds numbers the influence of the accuracy in measuring the hydraulic diameter prevails and also limits the minimum value that the total uncertainty can take.

Copyright © 2007 by ASME
Topics: Friction



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In