0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Non Uniform Flow Distribution on Single Phase Heat Transfer in Parallel Microchannels

[+] Author Affiliations
Akhilesh V. Bapat, Satish G. Kandlikar

Rochester Institute of Technology, Rochester, NY

Paper No. ICNMM2007-30186, pp. 269-276; 8 pages
doi:10.1115/ICNMM2007-30186
From:
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5
  • Copyright © 2007 by ASME

abstract

The continuum assumption has been widely accepted for single phase liquid flows in microchannels. There are however a number of publications which indicate considerable deviation in thermal and hydrodynamic performance during laminar flow in microchannels. In the present work, experiments have been performed on six parallel microchannels with varying cross-sectional dimensions. A careful assessment of friction factor and heat transfer in is carried out by properly accounting for flow area variations and the accompanying non-uniform flow distribution in individual channels. These factors seem to be responsible for the discrepancy in predicting friction factor and heat transfer using conventional theory.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In