Full Content is available to subscribers

Subscribe/Learn More  >

Deviation of Electroosmotic Flow From Plug-Like Profile: The Effect of Reservoir Size

[+] Author Affiliations
Deguang Yan, Chun Yang, Xiaoyang Huang

Nanyang Technological University, Singapore

Paper No. ICNMM2007-30023, pp. 169-175; 7 pages
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5
  • Copyright © 2007 by ASME


In electrokinetically-driven microfluidic applications, reservoirs are indispensable and have finite sizes. During operating processes, as the liquid level in reservoirs keeps changing as time elapses, a backpressure is generated. Thus, the flow in microfluidic channels actually exhibits a combination of the electroosmotic flow and the time-dependent induced backpressure-driven flow. In this paper, a model is presented to describe the effect of the finite reservoir size on electroosmotic flow in a rectangular microchannel. Important parameters that describe the effect of finite reservoir size on flow characteristics are discussed. A new concept termed as “effective pumping period” is introduced to characterize the reservoir size effect. The proposed model identifies the mechanisms of the finite-reservoir size effects and is verified by experiment using the micro-PIV technique. The results reported in this study can be used for facilitating the design of microfluidic devices.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In