Full Content is available to subscribers

Subscribe/Learn More  >

Selective Wettability Assisted Nanoliter Sample Generation via Electrowetting-Based Transportation

[+] Author Affiliations
Ting-Hsuan Chen, Chun-Min Su, Hsueh-Ching Chih, Cheng-Tsair Yang

Industrial Technology Research Institute, Hsinchu, Taiwan

Paper No. ICNMM2007-30184, pp. 147-153; 7 pages
  • ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels
  • Puebla, Mexico, June 18–20, 2007
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4272-X | eISBN: 0-7918-3800-5
  • Copyright © 2007 by ASME


A novel method for nanoliter sample generation is demonstrated. In this method, an electrowetting-based platform (EWOD) was used to transport a water droplet which was sandwiched between two hydrophobic plates, and the transportation was carried out by the direct electrical control of planar electrodes on the bottom glass substrate. In contrast to the air environment in ordinary EWOD, silicone oil was employed to surround the water droplet to reduce the surface hysteresis; therefore, the fluidic operations including cutting and transportation became easier to manipulate. While the droplet was moving through the electrodes, a nanoliter sample was produced within the circular hydrophilic area which was patterned on the upper ITO coated plate. Hence, based on the definition of selective wettability areas, the sample volume is capable to be well generated and controlled. Besides, in order to optimize the dimensions of electrode, the dimensional criterion for complete sample generation was investigated. The result shows that larger electrode width permits more flexibility to determine the radius of hydrophilic circle. Upon this mechanism, the hydrophilic circle of 0.25 mm diameter is able to generate the tiny sample of 3.9 nanoliter. Since the dimensions of the hydrophilic circle could be easily patterned in tens microns, this method has the potential to achieve the picoliter sample via similar procedure. Consequently, according to the tiny sample generation and reduction of hysteresis, such method is well-suitable for the versatile applications.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In