0

Full Content is available to subscribers

Subscribe/Learn More  >

Gas Turbine Fault Diagnosis From Fast Response Data Using Probabilistic Methods and Information Fusion

[+] Author Affiliations
A. Kyriazis, N. Aretakis, K. Mathioudakis

National Technical University of Athens, Athens, Greece

Paper No. GT2006-90362, pp. 571-579; 9 pages
doi:10.1115/GT2006-90362
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 2: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Environmental and Regulatory Affairs
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4237-1 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

The paper covers firstly the use of probabilistic neural networks for the classification of spectral fault signatures obtained from fast response data (sound, vibration, unsteady pressure). The method is compared to other alternatives, such as geometrical and statistical pattern recognition. The effectiveness of the method is demonstrated by presenting the results from application to data from a radial compressor and an industrial gas turbine. Further, probabilistic methods are used to perform information fusion. The outcomes of different diagnostic methods are used as a first level of diagnostic inference, and are fed to two different fusion processes which are based on i) Probabilistic Neural Networks and ii) Bayesian Belief Networks. It is demonstrated that these fusion processes provide powerful tools for effective fault classification.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In