Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Spray Dynamics Under Jet Engine Augmentor-Like Conditions

[+] Author Affiliations
Javier N. Johnson, Eugene Lubarsky, Ben T. Zinn

Georgia Institute of Technology, Atlanta, GA

Paper No. GT2006-91112, pp. 815-822; 8 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 1: Combustion and Fuels, Education
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4236-3 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


This paper describes an experimental investigation of fuel spray jet breakup mechanisms when it is injected across the high temperature air flow in low and high pressure jet engine augmentor-like conditions. Phase Doppler particle analyzer data and short exposure pulsed shadow graph images were taken of fuel jet injected into an air cross flow with liquid to air momentum ratios ranging from 5 to 180. Measured droplet diameters taken at atmospheric pressure and a flow Mach number of ∼0.15 show a progressive breakup of the droplets, gradually decreasing in size from 250μm to 150μm and finally to 25 μm as the spray moves downstream. The progressive breakup of droplets follows the classical Rayleigh-Helmholtz breakup mechanism. At higher pressure and Mach number tests, the fuel jet undergoes a different breakup process; i.e., the fuel jet breaks up instantaneously into a monodispurse spray of smaller droplets near the injector. High speed images of this process suggest that an aerodynamic breakup mechanism dominates this atomization process near the injector. In summary, the results of this study show the fuel jet breakup mechanism in augmentors varies significantly over the flight envelope.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In