0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of a Flameless Gas Turbine Combustor

[+] Author Affiliations
Guoqiang Li, Ephraim J. Gutmark, Nick Overman, Michael Cornwell

University of Cincinnati, Cincinnati, OH

Dragan Stankovic, Laszlo Fuchs

Lund Institute of Technology, Lund, Sweden

Vladimir Milosavljevic

Siemens Company, Sweden

Paper No. GT2006-91051, pp. 793-804; 12 pages
doi:10.1115/GT2006-91051
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 1: Combustion and Fuels, Education
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4236-3 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

This paper presents experimental data, performed at atmospheric conditions, on a novel flameless combustor with application to gas turbine engines. Flameless combustion is characterized by distributed flame and even temperature distribution achieved at conditions of high preheat air temperature and sufficiently large amounts of recirculating low oxygen concentration exhaust gases. Extremely low emissions of NOx , CO, and UHC are reported in this paper for flameless combustion in a multiple jets premixed gas turbine combustor. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature field, and velocity field reveal the influence of various parameters including: preheat temperature, inlet air mass flow rate, combustor exhaust nozzle contraction ratio, and combustor chamber diameter on emissions and combustion dynamics. The data indicate that greater air mass flow rates, thus larger pressure drop, promotes the formation of flameless combustion and lower NOx emissions for the same flame temperature. This flameless combustor is basically a premixed combustion in which NOx emissions is an exponential function of the flame temperature regardless of different air preheating temperatures. High preheat temperature and flow rates also help in forming stable combustion which is another advantageous feature of flameless combustion. The effects of the combustor exhaust contraction and the combustion chamber diameter on emissions and combustion dynamics are discussed.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In