0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Turbulent Combustion of Lean Premixed Prevaporized Propane Using the CFI Combustion Model

[+] Author Affiliations
B. de Jager, J. B. W. Kok

University of Twente, Enschede, The Netherlands

Paper No. GT2006-90565, pp. 487-494; 8 pages
doi:10.1115/GT2006-90565
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 1: Combustion and Fuels, Education
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4236-3 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

In this paper combustion of propane under gas turbine conditions is investigated with a focus on the chemistry and chemical kinetics in turbulent flames. The work is aimed at efficient and accurate modeling of the chemistry of heavy hydrocarbons, ie. hydrocarbons with more than one carbon atom, as occurring in liquid fuels for gas turbine application. On the basis of one dimensional laminar flame simulations with detailed chemistry, weight factors are determined for optimal projection of species concentrations on one or several composed concentrations, using the Computational Singular Perturbation (CSP) method. This way the species concentration space of the detailed mechanism is projected on a one dimensional space spanned by the reaction progress variable for use in a turbulent simulation. In the projection process a thermochemical database is used to relate with the detailed chemistry of the laminar flame simulations. Transport equations are formulated in a RaNS code for the mean and variance of the reaction progress variable. The turbulent chemical reaction source term is calculated by presumed shape probability density function averaging of the laminar source term in the thermochemical database. The combined model is demonstrated and validated in a simulation of a turbulent premixed prevaporized swirling propane/air flame at atmospheric pressure. Experimental data are available for the temperature field, the velocity field and the unburnt hydrocarbon concentrations. The trends produced by CFI compare reasonable to the experiments.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In