0

Full Content is available to subscribers

Subscribe/Learn More  >

Pressure Influence on the Flame Transfer Function of a Premixed Swirling Flame

[+] Author Affiliations
E. Freitag, H. Konle, M. Lauer, C. Hirsch, T. Sattelmayer

Technische Universität München, Garching, Germany

Paper No. GT2006-90540, pp. 477-486; 10 pages
doi:10.1115/GT2006-90540
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 1: Combustion and Fuels, Education
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4236-3 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

In order to assess the stability of gas turbine combustors measured flame transfer functions are frequently used in thermoacoustic network models. Although many combustion systems operate at high pressure, the measurement of flame transfer functions was essentially limited to atmospheric conditions in the past. With the test rig employed in the study presented in the paper transfer function measurements were made for a wide range of combustor pressures. The results show similarities of the amplitude response in the entire pressure range investigated. However, the increase of the pressure leads to a considerable amplitude gain at higher frequencies. In the low frequency regime the phase is also independent of pressure, whereas above this region the pressure increase results in a considerably smaller phase lag. These observations are particularly important when evaluating Rayleigh’s criterion: Interestingly, the choice of the operating pressure can render a system stable or unstable, so that the common procedure of applying flame transfer functions measured at ambient pressure for the high pressure engine case may not always be appropriate. The detailed analysis of high speed camera images, which were recorded to get locally resolved information on the flame response reveal different regions of activity within the flame that change in strength, size and location with changing operating conditions. The observed transfer function phase behavior is explained by the interaction of those regions and it is shown that the region of highest dynamic activity dominates the phase.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In