0

Full Content is available to subscribers

Subscribe/Learn More  >

Fuel Flexibility Test Campaign on a GE10 Gas Turbine: Experimental and Numerical Results

[+] Author Affiliations
Antonio Andreini, Bruno Facchini, Luca Mangani

University of Florence, Florence, Italy

Stefano Cocchi, Roberto Modi

GE Oil & Gas, Nuova Pignone, Florence, Italy

Paper No. GT2006-90510, pp. 433-444; 12 pages
doi:10.1115/GT2006-90510
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 1: Combustion and Fuels, Education
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4236-3 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

Medium- and low-LHV fuels are receiving a continuously growing interest in stationary power applications. Besides that, since in many applications the fuels available at a site can be time by time of significantly different composition, fuel flexibility has become one of the most important requirements to be taken into account in developing power systems. A test campaign, aimed to provide a preliminary assessment of a small power gas turbine’s fuel flexibility, was carried over a full-scale GE10 prototypical unit, located at the Nuovo-Pignone manufacturing site, in Florence. The engine is a single shaft, simple cycle gas turbine designed for power generation applications, rated at 11 MW electrical power and equipped with a silos-type combustor. A variable composition gas fuel was obtained by mixing natural gas with CO2 to about 40% by vol. at engine base-load condition. Tests involved two different diffusive combustion systems: the standard version, designed for operation with natural gas, and a specific system designed for low-LHV fuels. Tests performed aimed to investigate both ignition limits and combustors’ performances, focusing on hot parts’ temperatures and pollutant emissions. Regarding NOx emissions, data collected during standard combustor’s tests were matched a simple scaling law (as a function of cycle parameters and CO2 concentration in the fuel mixture), which can be used in similar applications as a NOx predictive tool. In a following step, a CFD study was performed in order to verify in detail the effects of LHV reduction on flame structure and to compare measured and calculated NOx . STAR-CD™ code was employed as main CFD solver while turbulent combustion and NOx models were specifically developed and implemented using STAR’s user-subroutine features. Both models are based on classical laminar-flamelet approach. Three different operating points were considered at base-load conditions, varying CO2 concentration (0%, 20% and 30% vol. simulated). Numerical simulations point out the flexibility of the GE10 standard combustor to assure flame stabilization even against large variation of fuel characteristics. Calculated NOx emissions are in fairly good agreement with measured data confirming the validity of the adopted models.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In