0

Full Content is available to subscribers

Subscribe/Learn More  >

Design Rules for the Velocity Field of Vortex Breakdown Swirl Burners

[+] Author Affiliations
Stephan Burmberger, Christoph Hirsch, Thomas Sattelmayer

Technische Universität München, Garching, Germany

Paper No. GT2006-90495, pp. 413-421; 9 pages
doi:10.1115/GT2006-90495
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 1: Combustion and Fuels, Education
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4236-3 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

Most gas turbine premix burners without centrebody employ the breakdown of a swirling flow at the transition between the mixing section and the combustor for aerodynamic flame stabilization. As the formation of the desired vortex breakdown pattern depends very sensibly on the shape of the axial and azimuthal velocity profiles in the mixing section, the design of suitable swirlers is typically a cumbersome process and requires an iterative approach consisting of numerical as well as experimental development steps to be iteratively applied until a geometry is found, that provides a spatially as well as temporarily stable vortex breakdown in the primary zone of the combustion chamber without backflow on the centerline of the vortex into the swirler. These difficulties stem from the lack of generally applicable aerodynamic design criteria. The paper attempts to contribute to the development of such design guidelines, which lead quickly to successful swirler designs without need for an excessive number of iterations. For this purpose a family of swirl profiles was generated and the corresponding axial velocity profiles were calculated assuming several radial total pressure distributions. In the next step, the flows were calculated using CFD in order to find out, which velocity profiles produce stable vortex breakdown bubbles at the burner exit. This study reveals that the stable breakdown of the vortex can be achieved for a wide range of velocity distributions, if the radial total pressure distribution is properly selected. However, the radial total pressure distribution in the vortex core is essential for the robustness of the design. Interestingly, velocity profiles with constant total pressure do not show a stable transition of the velocity field at the cross-sectional area change at the entrance of the combustion chamber. In addition, theoretical considerations reveal that an increase of the azimuthal velocity in the vortex core in streamwise direction avoids backflow on the centreline as well as flame flashback. This increase can be achieved using a slightly conical nozzle and introducing a swirl free jet on the centreline upstream of the mixing zone. All effects are explained using the vorticity transport equation.

Copyright © 2006 by ASME
Topics: Design , Vortices

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In