0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of the Fuel Injection in Gas Turbine Premixing Systems by Experimental Correlations and Numerical Simulations

[+] Author Affiliations
G. Riccio, L. Schoepflin, P. Adami, F. Martelli

University of Florence, Florence, Italy

Paper No. GT2006-90174, pp. 123-135; 13 pages
doi:10.1115/GT2006-90174
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 1: Combustion and Fuels, Education
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4236-3 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

This paper presents the aerodynamic study of two premixing systems for gas turbine combustion chamber based on detailed CFD 3-D simulations. The work was carried out with the aim to describe the aerodynamic and the mixing process in two different premixing system schemes, typical for DLE gas turbine combustion chamber. Results from different numerical tools (CFD 3-D and 0/1-D) for the estimation of the fuel jet pathway were compared. Both the premixer configurations analysed are related to the cross-flow injection scheme. The first one considers the fuel injection orthogonal to a low swirled air stream while the second one considers the fuel injection directly from hole rows drilled on the suction and pressure side of the swirler blades. The aerodynamic analysis of the premixing devices was focused on the fuel injection in terms of the jets pathway and air/fuel mixing in steady-state conditions. The aerodynamic investigations were performed by CFD 3-D “full Navier-Stokes” codes. Calculations were repeated, on the same mesh, by an in-house developed code (HybFlow) and by commercial codes also. Some previous experimental results were exploited to tune and validate the calculations. Results of the simulation were post-processed in order to allow a quantitative evaluation of the air/fuel mixing. Moreover the calculations were used to verify the accuracy of 0/1-D models, taken from the literature, for the estimation of the maximum penetration and the trajectory for the cross-flow of gaseous fuel jet, considering typical working conditions for gas turbine premixing system. Finally, preliminary considerations related to the fuel injection schemes and to the influence of the main injection conditions on the mixing were carried out.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In