Full Content is available to subscribers

Subscribe/Learn More  >

Point-Line Distance Under Riemannian Metrics

[+] Author Affiliations
Yi Zhang, Kwun-Lon Ting

Tennessee Technological University, Cookeville, TN

Paper No. DETC2005-84637, pp. 1017-1023; 7 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


A point-line is the combination of a directed line and an endpoint on the line. A pair of point-line positions corresponds to a point-line displacement, which is known to be associated with a set of rigid body displacements whose screw axes are distributed on a cylindroid. Different associated rigid body displacements generally correspond to different distances under Riemannian metrics on the manifold of SE(3). A unique measure of distance between a pair of point-line positions is desirable in engineering applications. In this paper, the distance between two point-line positions is investigated based on the left-invariant Riemannian metrics on the manifold of SE(3). The displacements are elaborated from the perspective of the soma space. The set of rigid body displacements associated to the point-line displacement is mapped to a one-dimensional great circle on the unit sphere in the space of four dual dimensions, on which the point with the minimum distance to the identity is indicated. It is shown that the minimum distance is achieved when an associated rigid body displacement has no rotational component about the point-line axis. The minimum distance, which has the inherited property of independence of inertial reference frames, is referred to as the point-line distance. A numerical example shows the application of point-line distance to a point-line path generation problem in mechanism synthesis.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In