Full Content is available to subscribers

Subscribe/Learn More  >

Kinematic Analyses of 5-DOF 3-RCRR Parallel Mechanism

[+] Author Affiliations
Zhen Huang, Si J. Zhu

Yanshan University, Qinhuangdao, Hebei, China

Paper No. DETC2005-84462, pp. 993-999; 7 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


This paper presents the kinematic analyses of a 5-DOF 3-RCRR parallel mechanism. The end-effector of this mechanism can rotate round rotation center and one reference point on it can translate in a plane parallels to the base platform. Since the traditional Kutzbach-Grübler formula is not valid for this mechanism, the modified Kutzbach-Grübler formula and screw theory are used in the mobility analysis. The Duffy’s spherical analytic theory is used in forward/reverse position analyses. In forward/reverse velocity/acceleration analyses, virtual mechanism principle is used to build a virtual parallel mechanism (3-Pv RCRR), which is equivalent to the initial mechanism (3-RCRR) on kinematics if all rates of virtual pairs (Pv ) are set to be zero. At the end, some kinematics curves are presented with a numerical example.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In