Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of Flameless Combustion Using Large Eddy Simulation

[+] Author Affiliations
Christophe Duwig, Robert-Zoltan Szasz, Laszlo Fuchs

Lund University, Lund, Sweden

Paper No. GT2006-90063, pp. 31-40; 10 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 1: Combustion and Fuels, Education
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4236-3 | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


The challenge of achieving a clean and stable combustion in modern power plants or aero engines leads to develop new technologies and new combustors. Pioneer work on ‘flameless’ combustion has shown the great potential of such a technology for meeting modern requirements in term of safety and low emissions. The idea behind this technique is to ensure low emissions by operating at very low fuel/air equivalence ratio but with high preheating to stabilize the combustion. In addition, a careful design of the combustor should ensure that fresh gases are diluted by hot exhaust gases. The result is a distributed but efficient oxidation region. This paper presents a new efficient model for simulating ‘flameless’ oxidation. The model is based on Large Eddy Simulation (LES) ensuring an accurate description of the mixing. In addition, a ‘low-cost’ technique for coupling the LES code with some complex chemistry is presented. This approach was used for simulating a reacting jet close to the ‘flameless’ regime. The simulation showed the capability of the present LES tool for understanding the flow dynamics and improving the design of ‘flameless’ combustors.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In