Full Content is available to subscribers

Subscribe/Learn More  >

Obstacle Avoidance Influence Coefficients for Manipulator Motion Planning

[+] Author Affiliations
Troy Harden

Los Alamos National Laboratory, Los Alamos, NM

Chetan Kapoor, Delbert Tesar

University of Texas at Austin, Austin, TX

Paper No. DETC2005-84223, pp. 735-747; 13 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


Motion planning in cluttered environments is a weakness of current robotic technology. While research addressing this issue has been conducted, few efforts have attempted to use minimum distance rates of change in motion planning. Geometric influence coefficients provide extraordinary insight into the interactions between a robot and its environment. They isolate the geometry of distance functions from system inputs and make the higher-order properties of minimum distance magnitudes directly available. Knowledge of the higher order properties of minimum distance magnitudes can be used to predict the future obstacle avoidance, path planning, and/or target acquisition state of a manipulator system and aid in making intelligent motion planning decisions. Here, first and second order geometric influence coefficients for minimum distance magnitudes are rigorously developed for several simple modeling primitives. A general method for similar derivations using new primitives and an evaluation of finite difference approximations versus analytical second order coefficient calculations are presented. Two application examples demonstrate the utility of minimum distance magnitude influence coefficients in motion planning.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In