Full Content is available to subscribers

Subscribe/Learn More  >

A Collision-Free Path Planning Method for an Articulated Mobile Robot in a Free Environment

[+] Author Affiliations
Patricia Quintero-Alvarez, Gabriel Ramirez, Saïd Zeghloul

Université de Poitiers, Futuroscope-Chasseneuil Cedex, France

Paper No. DETC2005-85217, pp. 667-675; 9 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


In our previous work, we have treated the collision-free path-planning problem for a nonholonomic mobile robot in a cluttered environment. The method we have used is based on a representation of the obstacles in the robot’s velocity space, called Feasible Velocities Polygon (FVP). Every obstacle in the robot’s influence zone is represented by a linear constraint over the robot’s velocities such that it could not be collision between the robot and the obstacle. These constraints define a convex subset in the velocity space, the FVP. Every velocity vector of the FVP ensures a safe motion for the given obstacle configuration. The path-planning problem is solved by an optimization approach between the FVP and a reference velocity to reach the goal. In this paper, we have extended our work to an articulated mobile robot. This robot is composed of a differential mobile robot as tractor and a trailer, linked by off-center joints. We have modified the reference velocity in order to consider the constraints imposed by the trailer over the robot’s velocities. The control law is a nonlinear control law, which is asymptotically stable to the goal. We use the virtual robot concept, to solve the stability problem when the robot and its trailer move backwards. An articulated mobile robot is a strongly constrained system. Even in a free environment, under some circumstances, the robot may get blocked by its trailer in its progression towards the goal. To solve these situations, we have developed a heuristic algorithm. This algorithm is based in human experience: when a blocking situation is detected, a forward-backward maneuver is made, in order to increase the distance between the tows until a maximal value. After this maneuver, the robot takes the path to the original goal. Some numerical results show that our method leads the robot and the trailer to the final position in a stable way.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In