Full Content is available to subscribers

Subscribe/Learn More  >

A Triad-Based Two-DOF Robomech: Architecture and Optimum Synthesis

[+] Author Affiliations
Ahmad Smaili, Bachir Chaaya

American University of Beirut, Beirut, Lebanon

Paper No. DETC2005-85200, pp. 661-666; 6 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


Presented in this paper is a 2-dof robomech that carries two end effectors to perform two functions simultaneously. The robomech has a 7R architecture consisting of two triad wings connected to form two cells. The over-constrained kinematic chain cannot traverse continuous trajectories but may be synthesized to move the end effectors through a set of desired locations. The article presents the architecture of the proposed robomech, establishes its kinematic relations and constraints, and provides dimensional synthesis scheme based on genetic algorithm and gradient search methods. Two case studies are included to demonstrate the applicability of the proposed robomech.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In