Full Content is available to subscribers

Subscribe/Learn More  >

Model-Based Sliding Mode Control for a Robot With SMA Actuators

[+] Author Affiliations
Hashem Ashrafiuon, Jala Vijay Reddy

Villanova University, Villanova, PA

Paper No. DETC2005-84868, pp. 615-621; 7 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


This paper presents a model-based sliding mode control law for a planar three-degree-of-freedom robot arm actuated by two rotary Shape Memory Alloy (SMA) actuators and a servomotor. The SMA actuators use a combination of SMA wires and pulleys to produce rotational motion. A model of the robot is developed which combines robot equations of motion with the SMA wire heat convection, constitutive law, and phase transformation equations. Two second-order sliding surfaces are defined leading to derivation of asymptotically stable control laws within the actuation region of the SMA wires. Outside the actuation region, constant inputs are used based on the one-way nature of the SMA actuators. The control law is shown to be effective in several simulations for both set point and trajectory tracking of the robot.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In