Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation Into the Use of Springs and Wing Motions to Minimize the Power Expended by a Mechanical Pigeon for Steady Flight

[+] Author Affiliations
K. Kurien Issac, Sunil K. Agrawal

University of Delaware, Newark, DE

Paper No. DETC2005-85288, pp. 383-392; 10 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


In this paper, we investigate the effect of using springs and wing motions to minimize the power required by a mechanical bird to fly. Inertia forces as well as aerodynamic forces on the wing are included. The design takes into account different flight speeds in the range from 0 to 20 m/s. Two ways in which springs can be attached, are considered. The frequency of wing beat is kept fixed and both flapping and feathering are assumed to be simple harmonic. Constraints are imposed on the maximum power expended by the two actuators of a wing. The results show that introduction of springs increases the power required at lower speeds, marginally reducing the power at higher speeds. In the manner in which they are used here, springs do not appear to be useful to reduce power. However, the optimal solutions obtained without springs indicate that it is possible to develop pigeon like mechanical birds which can hover and fly steadily up to 20 m/s.

Copyright © 2005 by ASME
Topics: Motion , Springs , Wings , Flight



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In