0

Full Content is available to subscribers

Subscribe/Learn More  >

CMAC Neural Network Control for High Precision Motion of Hybrid Actuator

[+] Author Affiliations
Zhang Ke, Wang Shengze

Donghua University, Shanghai, China

Paper No. DETC2005-84204, pp. 127-131; 5 pages
doi:10.1115/DETC2005-84204
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

Hybrid actuator is a new type of planar parallel robot, and requires precise control of the position of the mechanism. In order to achieve the desired accuracies, nonlinear factors as friction must be accurately compensated in the real-time servo control algorithm. According to the characteristics of the hybrid actuator, a hybrid intelligent control algorithm based on PID control and cerebellar model articulation control (CMAC) techniques was presented and used to perform control of hybrid actuator for the first time. Simulation results show that this method can improve the control effect remarkably compared with the traditional control strategy.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In