0

Full Content is available to subscribers

Subscribe/Learn More  >

Synthesis of Compliant Mechanisms With Specified Equilibrium Positions

[+] Author Affiliations
Hai-Jun Su

Iowa State University, Ames, IA

J. Michael McCarthy

University of California at Irvine, Irvine, CA

Paper No. DETC2005-85085, pp. 61-69; 9 pages
doi:10.1115/DETC2005-85085
From:
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4744-6 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME

abstract

This paper presents a synthesis procedure for a compliant four-bar linkage with three specified equilibrium configurations. The finite position synthesis equations are combined with equilibrium constraints at the flexure pivots to form design equations. These equations are simplified by modeling the joint angle variables in the equilibrium equations using sine and cosine functions. Solutions to these design equations were computed using a polynomial homotopy solver. In order to provide a design specification, we first compute the six equilibrium configurations of a known compliant four-bar mechanism. We use these results as design requirements to synthesize a compliant four-bar. The solver obtained eight real solutions which we refined using a Newton-Raphson technique. A numerical example is provided to verify the design methodology.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In