Full Content is available to subscribers

Subscribe/Learn More  >

The Application of Systems CFD to the Design and Optimization of High-Temperature Gas-Cooled Nuclear Power Plants

[+] Author Affiliations
Gideon P. Greyvenstein

North-West University, Potchefstroom, South Africa

Paper No. POWER2006-88194, pp. 847-860; 14 pages
  • ASME 2006 Power Conference
  • ASME 2006 Power Conference
  • Atlanta, Georgia, USA, May 2–4, 2006
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-4205-3 | eISBN: 0-7918-3776-9
  • Copyright © 2006 by ASME


The basic approach with the design of power plants is to first carry out a thermodynamic cycle analysis and then to vary certain cycle parameters such as the overall pressure ratio in order to determine the optimum or design point condition. One would then proceed to design the different components to match the process conditions. However, since component design has an impact on overall system performance, one cannot optimize the design of the components in isolation from the rest of the system. This calls for an iterative procedure where one has to move several times between the process and component levels to obtain an optimized integrated solution. Another problem faced by plant designers is that Computational Fluid Dynamics (CFD) codes that are increasingly used for detailed component design are slow and not well suited for optimization studies. They are not suited at all for the analysis of complete power plants. Furthermore, the main task of plant designers is not to do design point analyses but to analyze off-design performance, to do uncertainty analyses, to optimize the design and to characterize the dynamic behavior of the system for the purpose of controller design. An approach that has been used with great success for the design of the power conversion system of the Pebble Bed Modular Reactor (PBMR) is the systems CFD approach. The PBMR is a new High Temperature Gas-cooled Reactor (HTR) that is being developed in South Africa. The PBMR utilizes a direct closed recuperated Brayton cycle. Other cycles are also being investigated including various combined cycles. Systems CFD codes are based on the network approach and allow one to model the performance of large complex systems in an integrated fashion. Different levels of component models are provided for ranging from lumped models for components such as pumps to 1D, 2D or even 3D CFD models for components such as complex diffusers, heat exchangers and the pebble bed reactor. In this paper the systems CFD approach will be discussed including the most important component models. Various examples of the application of the systems CFD approach in the design of the PBMR plant will be given.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In