0

Full Content is available to subscribers

Subscribe/Learn More  >

The Exergy Underground Coal Gasification Technology as a Source of Superior Fuel for Power Generation

[+] Author Affiliations
Michael S. Blinderman

Ergo Exergy Technologies Inc., Côte St. Luc, QC, Canada

Paper No. POWER2006-88064, pp. 437-444; 8 pages
doi:10.1115/POWER2006-88064
From:
  • ASME 2006 Power Conference
  • ASME 2006 Power Conference
  • Atlanta, Georgia, USA, May 2–4, 2006
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-4205-3 | eISBN: 0-7918-3776-9
  • Copyright © 2006 by ASME

abstract

Underground Coal Gasification (UCG) is a gasification process carried on in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practiced by Ergo Exergy Technologies is called the Exergy UCG Technology or εUCG® Technology. The εUCG technology is being applied in numerous power generation and chemical projects worldwide. These include power projects in South Africa (1,200 MWe), India (750 MWe), Pakistan, and Canada, as well as chemical projects in Australia and Canada. A number of εUCG based industrial projects are now at a feasibility stage in New Zealand, USA, and Europe. An example of εUCG application is the Chinchilla Project in Australia where the technology demonstrated continuous, consistent production of commercial quantities of quality fuel gas for over 30 months. The project is currently targeting a 24,000 barrel per day synthetic diesel plant based on εUCG syngas supply. The εUCG technology has demonstrated exceptional environmental performance. The εUCG methods and techniques of environmental management are an effective tool to ensure environmental protection during an industrial application. A εUCG-IGCC power plant will generate electricity at a much lower cost than existing or proposed fossil fuel power plants. CO2 emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In