Full Content is available to subscribers

Subscribe/Learn More  >

Deviations in Predicted Condenser Performance for Power Plants Using HEI Correction Factors: A Case Study

[+] Author Affiliations
Komandur S. Sunder Raj

Power & Energy Systems Services, Oradell, NJ

Paper No. POWER2006-88003, pp. 127-135; 9 pages
  • ASME 2006 Power Conference
  • ASME 2006 Power Conference
  • Atlanta, Georgia, USA, May 2–4, 2006
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-4205-3 | eISBN: 0-7918-3776-9
  • Copyright © 2006 by ASME


The Heat Exchange Institute (HEI) Standards for Steam Surface Condensers are used to design and predict the performance of condensers for power plant applications. Since their inception, the Standards have undergone numerous changes to incorporate technological advances and revisions to various factors based on testing and operating experiences. Admiralty and copper-nickel (CuNi) tubes were very popular until the 1970’s. Subsequently, increasing concerns with the use of copper-based alloys in nuclear power plants as well as other factors led to specification and use of stainless steel (SS) and titanium. The first condenser designed with titanium tubes was put into service in 1977. In 1978, the HEI published the seventh edition of the HEI Standards for Steam Surface Condensers. The eighth edition was issued in 1984 followed by Addendum 1 in 1989. The ninth edition was issued in 1995 and Addendum 1 to the ninth edition was published in 2002. Notable differences between the ninth and seventh editions include: higher circulating water inlet temperature correction factors below 70.0 °F; for Admiralty, higher tube material and gauge correction factors for tube wall gauge below 16 BWG and lower values above 20 BWG; for 90/10 CuNi and 304 SS, higher tube material and gauge correction factors for tube wall gauge between 12 BWG and 24 BWG; and, for titanium, higher tube material and gauge correction factors for tube wall gauge above 18 BWG. Depending upon the tube diameter, material, wall gauge and the correction factors used for a specific condenser application and its operating range, there could be substantial deviations in predicted condenser performance and associated impact on output. Using a case study, this paper examines the use of the correction factors from the seventh and ninth editions in power plant condenser performance predictions. It provides recommendations for developing proper benchmarks and for ensuring optimum condenser performance.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In