Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Mechanical Properties of Carbon Nanotubes in Copper-Matrix Nanocomposites

[+] Author Affiliations
Seunghyun Baik, Byeongsoo Lim, Bumjoon Kim, Untae Sim, Seyoung Oh, Byung-Ho Sung, Jee-Hoon Choi, Chul-Ju Kim

Sungkyunkwan University

Paper No. IMECE2006-14224, pp. 457-462; 6 pages
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Materials, Nondestructive Evaluation, and Pressure Vessels and Piping
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Materials Division, Nondestructive Evaluation Division, and Pressure Vessels and Piping Division
  • ISBN: 0-7918-4773-X | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME


Carbon nanotubes have received considerable attention because of their excellent mechanical properties. In this study, carbon nanotube - copper composites have been sintered by a mechanical mixing process. The interfacial bonding between nanotubes and the copper matrix was improved by coating nanotubes with nickel. Sintered pure copper samples were used as control materials. The displacement rate of nanotube-copper composites was found to increase at 200°C whereas that of nickel-coated nanotue-copper composites significantly decreased. The incorporation of carbon nanotubes and nickel-coated carbon nanotubes in the copper matrix decreased friction coefficients and increased the time up to the onset of scuffing compared with those of pure copper specimens.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In