0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Grain Size and Grain Boundary on Mechanical Yielding Behavior of Fully Stabilized Zirconia

[+] Author Affiliations
Jie Lian, Javier Garay, Junlan Wang

University of California at Riverside

Paper No. IMECE2006-15418, pp. 407-412; 6 pages
doi:10.1115/IMECE2006-15418
From:
  • ASME 2006 International Mechanical Engineering Congress and Exposition
  • Materials, Nondestructive Evaluation, and Pressure Vessels and Piping
  • Chicago, Illinois, USA, November 5 – 10, 2006
  • Conference Sponsors: Materials Division, Nondestructive Evaluation Division, and Pressure Vessels and Piping Division
  • ISBN: 0-7918-4773-X | eISBN: 0-7918-3790-4
  • Copyright © 2006 by ASME

abstract

Mechanical properties of fully yttria stabilized zirconia (F-YSZ) with different grain sizes were investigated using instrumented indentation. While the grain size effect on the yield strength was performed on both the coarse-grained and fine-grained F-YSZ, the grain boundary effect was studied on the coarse-grained F-YSZ by performing nanoindentation within the grains and on/near the grain boundaries. Little variations were observed on mechanical properties such as hardness and reduced modulus, interesting results were obtained on the grain boundary effect on the yielding load for the course-grained F-YSZ.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In