Full Content is available to subscribers

Subscribe/Learn More  >

Probabilistic Analysis of Notched Micro Specimen Under Three-Point Loading

[+] Author Affiliations
S. Ekwaro-Osire, M. P. H. Khandaker, K. Gautam

Texas Tech University, Lubbock, TX

Paper No. DETC2005-85493, pp. 717-725; 9 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4c: 18th Reliability, Stress Analysis, and Failure Prevention Conference
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4741-1 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


Stress singularity arises in MEMS devices due to sudden geometric and material variation. Sharp notches are common example of sudden geometric variation, which often occurs during the fabrication process of MEMS components. The magnitude of the stress field induced due to stress singularity is given by the value of the notch stress intensity, K. The stress intensity is depended on the notch geometry and the type of loading (mode I, mode II and mode III). Fracture failure at the notch occurs when notch stress intensity reach fracture toughness, KC . An electrostatically actuated test device used for the analysis of a notched micro beam specimen under three-point loading will be presented. The objective of this study was to investigate the effect of geometric configuration on the stress field around singularity for a micro beam specimen by asymptotic, numerical and probabilistic analysis. The scope of work is fourfold. First, the effect of notch angle on the strength of the singularity is determined using two different asymptotic analysis methods — complex potential method and Airy stress function method. Second, the effect of the angular variation (for different notch angle) on the influence coefficients is determined using analytical methods. Third, the effect of the notch angle and depth on the stress intensity factor is determined using finite element methods and contour integral method. Fourth, the probabilistic analysis of maximum stress developed in the micro beam specimen is performed.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In