Full Content is available to subscribers

Subscribe/Learn More  >

Alternative Methods for Reliability-Based Robust Design Optimization Including Dimension Reduction Method

[+] Author Affiliations
Ikjin Lee, Kyung K. Choi, Liu Du

University of Iowa, Iowa City, IA

Paper No. DETC2006-99732, pp. 1235-1246; 12 pages
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 32nd Design Automation Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4255-X | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME


The objective of reliability-based robust design optimization (RBRDO) is to minimize the product quality loss function subject to probabilistic constraints. Since the quality loss function is usually expressed in terms of the first two statistical moments, mean and variance, many methods have been proposed to accurately and efficiently estimate the moments. Among the methods, the univariate dimension reduction method (DRM), performance moment integration (PMI), and percentile difference method (PDM) are recently proposed methods. In this paper, estimation of statistical moments and their sensitivities are carried out using DRM and compared with results obtained using PMI and PDM. In addition, PMI and DRM are also compared in terms of how accurately and efficiently they estimate the statistical moments and their sensitivities of a performance function. In this comparison, PDM is excluded since PDM could not even accurately estimate the statistical moments of the performance function. Also, robust design optimization using DRM is developed and then compared with the results of RBRDO using PMI and PDM. Several numerical examples are used for the two comparisons. The comparisons show that DRM is efficient when the number of design variables is small and PMI is efficient when the number of design variables is relatively large. For the inverse reliability analysis of reliability-based design, the enriched performance measure approach (PMA+) is used.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In