0

Full Content is available to subscribers

Subscribe/Learn More  >

A Sequential Algorithm for Possibility-Based Design Optimization

[+] Author Affiliations
Jun Zhou, Zissimos P. Mourelatos

Oakland University, Rochester, MI

Paper No. DETC2006-99232, pp. 1063-1075; 13 pages
doi:10.1115/DETC2006-99232
From:
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 32nd Design Automation Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4255-X | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME

abstract

Deterministic optimal designs that are obtained without taking into account uncertainty/variation are usually unreliable. Although reliability-based design optimization accounts for variation, it assumes that statistical information is available in the form of fully defined probabilistic distributions. This is not true for a variety of engineering problems where uncertainty is usually given in terms of interval ranges. In this case, interval analysis or possibility theory can be used instead of probability theory. This paper shows how possibility theory can be used in design and presents a computationally efficient sequential optimization algorithm. After, the fundamentals of possibility theory and fuzzy measures are described, a double-loop, possibility-based design optimization algorithm is presented where all design constraints are expressed possibilistically. The algorithm handles problems with only uncertain or a combination of random and uncertain design variables and parameters. In order to reduce the high computational cost, a sequential algorithm for possibility-based design optimization is presented. It consists of a sequence of cycles composed of a deterministic design optimization followed by a set of worst-case reliability evaluation loops. Two examples demonstrate the accuracy and efficiency of the proposed sequential algorithm.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In