0

Full Content is available to subscribers

Subscribe/Learn More  >

Reliability-Based Design Using Saddlepoint Approximation

[+] Author Affiliations
Xiaoping Du

University of Missouri-Rolla, Rolla, MO

Paper No. DETC2006-99077, pp. 1011-1024; 14 pages
doi:10.1115/DETC2006-99077
From:
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 32nd Design Automation Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4255-X | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME

abstract

Reliability-based design optimization is much more computationally expensive than deterministic design optimization. To alleviate the computational demand, the First Order Reliability Method (FORM) is usually used in reliability-based design. Since FORM requires a nonlinear transformation from non-normal random variables to normal random variables, the nonlinearity of a constraint function may increase. As a result, the transformation may lead to a large error in reliability calculation. In order to improve accuracy, a new reliability-based design method with Saddlepoint Approximation is proposed in this work. The strategy of sequential optimization and reliability assessment is employed where the reliability analysis is decoupled from deterministic optimization. The accurate First Order Saddlepoint method is used for reliability analysis in the original random space without any transformation, and the chance of increasing nonlinearity of a constraint function is therefore eliminated. The overall reliability-based design is conducted in a sequence of cycles of deterministic optimization and reliability analysis. In each cycle, the percentile value of the constraint function corresponding to the required reliability is calculated with the Saddlepoint Approximation at the optimal point of the deterministic optimization. Then the reliability analysis results are used to formulate a new deterministic optimization model for the next cycle. The solution process converges within a few cycles. The demonstrative examples show that the proposed method is more accurate and efficient than the reliability-based design with FORM.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In