Full Content is available to subscribers

Subscribe/Learn More  >

Two Methodologies for Identifying Product Platform Elements Within an Existing Set of Products

[+] Author Affiliations
Elizabeth D. Steva, Elizabeth N. Rice, Tucker J. Marion, Timothy W. Simpson

Pennsylvania State University, University Park, PA

Robert B. Stone

University of Missouri at Rolla, Rolla, MO

Paper No. DETC2006-99234, pp. 811-821; 11 pages
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 32nd Design Automation Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4255-X | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME


As companies are pressured to decrease product development costs concurrently with increasing product variety, the need to develop products based upon common components and platforms is growing. Determining why a platform worked, or alternatively why it did not, is an important step in the successful implementation of product families and product platforms in any industry. Unfortunately, published literature on platform identification and product family analysis using product dissection and reverse engineering methods is surprisingly sparse. This paper introduces two platform identification methodologies that use different combinations of tools that can be readily applied based on information obtained directly from product dissection. The first methodology uses only the Bills-of-Materials and Design Structure Matrices while the second utilizes function diagrams, Function-Component Matrices, Product-Vector Matrices, and Design Structure Matrices to perform a more in-depth analysis of the set of products. Both methodologies are used to identify the platform elements in a set of five single-use cameras available in the market. The proposed methodologies identify the film advance and shutter actuation platform elements of the cameras, which include seven distinct components. The results are discussed in detail along with limitations of these two methodologies.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In