Full Content is available to subscribers

Subscribe/Learn More  >

A Two-Stage Design Method for Compliant Mechanisms Having Specified Non-Linear Output Paths

[+] Author Affiliations
Masakazu Kobayashi

Toyota Technological Institute, Nagoya, Japan

Hiroshi Yamakawa

Waseda University, Tokyo, Japan

Shinji Nishiwaki, Kazuhiro Izui, Masataka Yoshimura

Kyoto University, Kyoto, Japan

Paper No. DETC2006-99351, pp. 639-650; 12 pages
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 32nd Design Automation Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4255-X | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME


Compliant mechanisms generated by traditional topology optimization methods have linear output response, and it is difficult for traditional methods to implement mechanisms having non-linear output responses, such as nonlinear deformation or path. To design a compliant mechanism having a specified nonlinear output path, a two-stage design method based on topology and shape optimization is constructed here. In the first stage, topology optimization generates an initial and conceptual compliant mechanism based on ordinary design conditions, with “additional” constraints that are used to control the output path at the second stage. In the second stage, an initial model for the shape optimization is created, based on the result of the topology optimization, and the additional constraints are replaced by spring elements. The shape optimization is then executed, to generate a detailed shape of the compliant mechanism having the desired output path. In this stage, parameters that represent the outer shape of the compliant mechanism and the properties of spring elements are used as design variables in the shape optimization. In addition to configuration of the specified output path, executing the shape optimization after the topology optimization also makes it possible to consider the stress concentration and large displacement effects. This is an advantage offered by the proposed method, since it is difficult for traditional methods to consider these aspects, due to inherent limitations of topology optimization.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In