Full Content is available to subscribers

Subscribe/Learn More  >

Augmenting Tools for Reverse Engineering Methods

[+] Author Affiliations
Mark Snider, Sudhakar Teegavarapu, D. Scott Hesser, Joshua D. Summers

Clemson University, Clemson, SC

Paper No. DETC2006-99676, pp. 371-380; 10 pages
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 32nd Design Automation Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4255-X | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME


Reverse engineering has gained importance over the past few years due to an intense competitive market aiding in the survivability of a company. This paper examines the reverse engineering process and what, how, and why it can assist in making a better design. Two well known reverse engineering methodologies are explored, the first by Otto and Wood and the second by Ingle. Each methodology is compared and contrasted according to the protocols and tools used. Among some of the reverse engineering tools detailed and illustrated are: Black box, Fishbone, Function Structure, Bill of Material, Exploded CAD models, Morphological Matrix, Subtract and Operate Procedure (SOP), House of Quality matrix, and FMEA. Even though both methodologies have highly valued tools, some of the areas in reverse engineering need additional robust tooling. This paper presents new and expanded tooling to augment the existing methods in hopes of furthering the understanding of the product, and process. Tools like Reverse Failure Mode and Effects Analysis (RFMEA), Connectivity graphs, and inter-relation matrix increase the design efficiency, quality, and the understanding of the reverse engineering process. These tools have been employed in two industry projects and one demonstrative purpose for a Design for Manufacture Class. In both of these scenarios, industry and academic, the users found that the augmented tools were useful in capturing and revealing information not previously realized.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In