Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Chemical Vapor Deposition Process

[+] Author Affiliations
Pradeep George, Hae Chang Gea, Yogesh Jaluria

Rutgers University, Piscataway, NJ

Paper No. DETC2006-99748, pp. 309-316; 8 pages
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 32nd Design Automation Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4255-X | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME


Chemical Vapor Deposition (CVD) process is simulated and optimized for the deposition of a thin film of silicon from silane. The key focus is on the rate of deposition and on the quality of the thin film produced. The intended application dictates the level of quality need for the film. Proper control of the governing transport processes results in large area film thickness and composition uniformity. A vertical impinging CVD reactor is considered. The goal is to optimize the CVD system. The effect of important design parameters and operating conditions are studied using numerical simulations. Then Compromise Response Surface Method (CRSM) is used to model the process over a range of susceptor temperature and inlet velocity of the reaction gases. The resulting response surface is used to optimize the CVD system.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In