0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Tolerance Allocation of Automotive Pneumatic Control Valves Based on Product and Process Simulations

[+] Author Affiliations
Naesung Lyu, Kazuhiro Saitou

University of Michigan, Ann Arbor, MI

Amane Shimura

Toyota Motor Corporation, Aichi, Japan

Paper No. DETC2006-99592, pp. 301-308; 8 pages
doi:10.1115/DETC2006-99592
From:
  • ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 32nd Design Automation Conference, Parts A and B
  • Philadelphia, Pennsylvania, USA, September 10–13, 2006
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4255-X | eISBN: 0-7918-3784-X
  • Copyright © 2006 by ASME

abstract

This paper discusses a computational method for optimally allocating dimensional tolerances for an automotive pneumatic control valve. Due to the large production volume, costly tight tolerances should be allocated only to the dimensions that have high influence to the quality. Given a parametric geometry of a valve, the problem is posed as a multi-objective optimization with respect to product quality and production cost. The product quality is defined as 1) the deviation from the nominal valve design in the linearity of valve stroke and fluidic force, and 2) the difference in fluidic force with and without cavitation. These quality measures are estimated by using Monte Carlo simulation on a Radial-Basis Function Network (RBFN) trained with computational fluid dynamics (CFD) simulation of the valve operation. The production cost is estimated by the tolerance-cost relationship obtained from the discrete event simulations of valve production process. A multi-objective genetic algorithm is utilized to generate Pareto optimal tolerance allocations with respect to these objectives, and alternative tolerance allocations are proposed considering the trade-offs among multiple objectives.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In