0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Labyrinth Seals for Steam Turbine Generators

[+] Author Affiliations
Ahmad D. Vakili, Abraham J. Meganathan, Sricharan Ayyalasomayajula

University of Tennessee Space Institute, Tullahoma, TN

Stephen Hesler

EPRI

Lewis Shuster

Reliant Resources

Paper No. GT2006-91263, pp. 1599-1608; 10 pages
doi:10.1115/GT2006-91263
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

A new class of knives (C-Shaped) for reduced labyrinth seal discharge has been designed and assessed through two dimensional numerical modeling of the seal’s internal flow passages. Modeling procedures used for the analysis have been previously validated by comparison with static labyrinth seal experiments. The objectives of the new seal are to: 1) reduce flow leakage through the seal and 2) introduce structural flexibility in the knives so that design clearances could be maintained even after rub events during startup. The baseline chosen for comparative evaluation is an N2 packing used in GE steam turbines. The new seals have compliant C-shaped knives instead of the straight knives, found in an N2 packing. The best performing configuration has one tall ‘C’ shaped long knife and three ‘C’ shaped short knives in each stage. It was found that the best configuration at clearances similar to the baseline seal reduces flow leakage by 42%. Two dimensional numerical structural analyses showed that the new seal knife is more flexible than a straight knife. This is also intuitive by virtue of its geometric profile. A non-dimensional geometric parameter correlates with the degree of flexibility in the knife. These results indicate a potential for design of labyrinth seals that maintain lower design clearances throughout their life time by carefully selecting the knives’ geometric parameters and incorporating high performance composite materials. Then, the new design would result in significantly lower steam leakage.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In