Full Content is available to subscribers

Subscribe/Learn More  >

Homogenization of Vibrating Periodic Lattice Structures

[+] Author Affiliations
Stefano Gonella, Massimo Ruzzene

Georgia Institute of Technology, Atlanta, GA

Paper No. DETC2005-84428, pp. 21-31; 11 pages
  • ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 20th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C
  • Long Beach, California, USA, September 24–28, 2005
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4738-1 | eISBN: 0-7918-3766-1
  • Copyright © 2005 by ASME


The paper describes a homogenization technique for periodic lattice structures. The analysis is performed by considering the irreducible unit cell as a building block that defines the periodic pattern. In particular, the continuum equivalent representation for the discrete structure is sought with the objective of retaining information regarding the local properties of the lattice, while condensing its global behavior into a set of differential equations. These equations can then be solved either analytically or numerically, thus providing a model which involves a significantly lower number of variables than those required for the detailed model of the assembly. The methodology is first tested by comparing the dispersion relations obtained through homogenization with those corresponding to the detailed model of the unit cells and then extended to the comparison of exact and approximate harmonic responses. This comparison is carried out for both one-dimensional and two-dimensional assemblies. The application to three-dimensional structures is not attempted in this work and will be approached in the future without the need for substantial conceptual changes in the theoretical procedure. Hence the presented technique is expected to be applicable to a wide range of periodic structures, with applications ranging from the design of structural elements of mechanical and aerospace interest to the optimization of smart materials with attractive mechanical, thermal or electrical properties.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In