Full Content is available to subscribers

Subscribe/Learn More  >

Automatic Optimisation of Pre-Swirl Nozzle Design

[+] Author Affiliations
Fabio Ciampoli, John W. Chew

University of Surrey, Guildford, Surrey, UK

Shahrokh Shahpar, Elisabeth Willocq

Rolls-Royce plc, Derby, UK

Paper No. GT2006-90249, pp. 1345-1353; 9 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


The objective of the research described here is to develop and demonstrate use of automatic design methods for pre-swirl nozzles. Performance of pre-swirled cooling air delivery systems depends critically on the design of these nozzles which is subject to manufacturing and stress constraints. The best solution may be a compromise between cost and performance. Here it is shown that automatic optimisation using computational fluid dynamics (CFD) to evaluate nozzle performance can be useful in design. A parametric geometric model of a nozzle with appropriate constraints is first defined and the CFD meshing and solution are then automated. The mesh generation is found to be the most delicate task in the whole process. Direct hill climbing (DHC) and response surface model (RSM) optimisation methods have been evaluated. For the test case considered, significant nozzle performance improvements were obtained using both methods, but the RSM model was preferred.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In