0

Full Content is available to subscribers

Subscribe/Learn More  >

Predicting Transition on Concave Surfaces

[+] Author Affiliations
Mark W. Johnson

University of Liverpool, Liverpool, UK

Paper No. GT2006-90455, pp. 1173-1179; 7 pages
doi:10.1115/GT2006-90455
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

Boundary layers on concave surfaces differ from those on flat plates due to the presence of Taylor Goertler (T-G) vortices. These vortices cause momentum transfer normal to the blade’s surface and hence result in a more rapid development of the laminar boundary layer and a fuller profile than is typical of a flat plate. Transition of boundary layers on concave surfaces also occurs at a lower Rex than on a flat plate. Concave surface transition correlations have been formulated previously from experimental data, but they are not comprehensive and are based on relatively sparse data. The purpose of the current work was to attempt to model the physics of both the laminar boundary layer development and transition process in order to produce a transition model suitable for concave surface boundary layers. The development of the laminar boundary layer on a concave surface was modeled by considering the profiles at the upwash and downwash locations separately. The profiles of the boundary layers at these two locations were then combined to successfully approximate the spanwise averaged profile. The ratio of the boundary layer thicknesses at the two locations was found to be as great as 50 and this leads to laminar boundary layer shape factors as low as 1.3 and skin friction coefficients up to 12 times the value for a flat plate laminar boundary layer. Boundary layers therefore grow much more rapidly on concave surfaces than on flat plates. The transition model assumed that transition commenced in the upwash location boundary layer at the same transition inception Reθ observed on a flat plate. Transition at the downwash location then results from the growth of turbulent spots from the upwash location rather than through the initiation of spots. The model showed that initially curvature promotes transition because of the thickened upwash boundary layer, but for strong curvature the T-G vortices effectively stabilise the boundary layer and transition then occurs at a higher Reθ than on a flat plate. Results from the transition model were in broad agreement with experimental observations. The current work therefore provides a basis for the modeling of transition on concave surfaces.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In