Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of the Impact of Laminar-Turbulent Transition on the Accuracy of Heat Transfer Coefficient Prediction in High Pressure Turbines

[+] Author Affiliations
Mahmoud L. Mansour, Khosro Molla Hosseini, Jong S. Liu

Honeywell Aerospace, Phoenix, AZ

Shraman Goswami

Honeywell Technology Solutions Laboratory, Bangalore, India

Paper No. GT2006-90273, pp. 1127-1138; 12 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


This paper presents a thorough assessment for two of the contemporary CFD programs available for modeling and predicting nonfilm-cooled surface heat transfer distributions on turbine airfoil surfaces. The CFD programs are capable of predicting laminar-turbulent transition and have been evaluated and validated against five test cases with experimental data. The suite of test cases considered for this study consists of two flat plat cases at zero and non-zero pressure gradient and three linear-turbine-cascade test cases that are representative of modern high pressure turbine designs. The flat plate test cases are the ERCOFTAC T3A and T3C2, while the linear turbine cascade cases are the MARKII, the Virginia Polytechnic Institute (VPI), and the Von Karman Institute (VKI) turbine cascades. The numerical tools assessed in this study are 3D viscous Reynolds Averaged-Navier-Stokes (RANS) equations programs that employ a variety of one-equation and two-equation models for turbulence closure. The assessment study focuses on the one-equation Spalart and Allmaras and the two-equation shear stress transport K-ω turbulence models with the ability of modeling and predicting laminar-turbulent transition. The RANS 3D viscous codes are Numeca’s Fine Turbo and ANSYS-CFX’ CFX5. Numerical results for skin friction, surface temperature distribution and heat transfer coefficient from the CFD programs are compared to measured experimental data. Sensitivity of the predictions to free stream turbulence and to inlet turbulence boundary conditions is also presented. The results of the study clearly illustrate the superiority of using the laminar-turbulent transition prediction in improving the accuracy of predicting the heat transfer coefficient on the surfaces of high pressure turbine airfoils.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In