Full Content is available to subscribers

Subscribe/Learn More  >

Evolution of Surface Deposits on a High Pressure Turbine Blade: Part I — Physical Characteristics

[+] Author Affiliations
James E. Wammack, Jared Crosby, Daniel Fletcher, Jeffrey P. Bons, Thomas H. Fletcher

Brigham Young University, Provo, UT

Paper No. GT2006-91246, pp. 1055-1063; 9 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


Turbine blade coupons with three different surface treatments were exposed to deposition conditions in an accelerated deposition facility. The facility simulates the flow conditions at the inlet to a first stage high pressure turbine (T = 1150°C, M = 0.31). The combustor exit flow is seeded with dust particulate that would typically be ingested by a large utility power plant. The three coupon surface treatments included: (1) bare polished metal, (2) polished thermal barrier coating with bondcoat, and (3) unpolished oxidation resistant bondcoat. Each coupon was subjected to four successive 2 hour deposition tests. The particulate loading was scaled to simulate 0.02 ppmw (parts per million weight) of particulate over three months of continuous gas turbine operation for each 2 hour laboratory simulation (for a cumulative one year of operation). Three-dimensional maps of the deposit-roughened surfaces were created between each test, representing a total of four measurements evenly spaced through the lifecycle of a turbine blade surface. From these measurements the surface topology and roughness statistics were determined. Despite the different surface treatments, all three surfaces exhibited similar non-monotonic changes in roughness with repeated exposure. In each case, an initial build-up of isolated roughness peaks was followed by a period when valleys between peaks were filled with subsequent deposition. This trend is well documented using the average forward facing roughness angle in combination with the average roughness height as characteristic roughness metrics. Deposition-related mechanisms leading to spallation of the thermal barrier coated coupons are identified and documented.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In