Full Content is available to subscribers

Subscribe/Learn More  >

The Use of High Blockage Ribs to Enhance Heat Transfer Coefficient Distributions in a Model of an Integrally Cast Cooling Manifold

[+] Author Affiliations
Ioannis Ieronymidis, David R. H. Gillespie, Peter T. Ireland

University of Oxford, Oxford, UK

Robert Kingston

Rolls-Royce plc., Bristol, UK

Paper No. GT2006-91237, pp. 1027-1039; 13 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


In this paper detailed experimental measurements and computational predictions of heat transfer coefficient distributions in a large scale perspex model of a novel integrally cast blade cooling geometry are reported. In a gas turbine blade, the cooling passage investigated is integrally cast into the blade wall, providing good thermal contact with the outer surface of the turbine blade. Flow enters the racetrack passage through the root of the blade and exits to a central plenum through a series of nineteen transfer holes equally spaced in a staggered arrangement across the span of the blade. The Reynolds number changes continuously along the passage length because of the continuous ejection of fluid through a series of 19 transfer holes to the plenum. The smooth passage surface opposite is in closest proximity to the external surface, and this investigation has characterised the heat transfer coefficient on this surface at a range of engine representative inlet Reynolds numbers using a hybrid transient liquid crystal technique. The ability of three different rib configurations to enhance the heat transfer on this surface was also determined. Because the passage at engine scale is necessarily small, the rib height in all cases was 32.5% of the passage height. As the entire passage wetted surface is able to contribute to the blade cooling, and knowledge of the heat transfer coefficient distribution on the holed surfaces is crucial to prediction of blade life, a commercial CFD package, Fluent, was used to predict the heat transfer coefficient distributions on the holed surface, where there was no optical access during these tests. This also allowed investigation of additional rib configurations, and comparison of the pressure penalty associated with each design. The study showed that the turbulator configuration used allows the position and maximum level of heat transfer coefficient enhancement to be chosen by the engine designer. For the configurations tested heat transfer coefficient enhancement of up to 32% and 51% could be achieved on the holed surface and the ribbed surface respectively. For minimum additional pressure drop 45° ribs should be used.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In