Full Content is available to subscribers

Subscribe/Learn More  >

Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes

[+] Author Affiliations
Andrew C. Chambers, David R. H. Gillespie, Peter T. Ireland

University of Oxford, Oxford, UK

Mark Mitchell

Rolls-Royce plc., Bristol, UK

Paper No. GT2006-91229, pp. 995-1004; 10 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


Impingement systems are common place in many turbine cooling applications. Generally these systems consist of a target plate that is cooled by the impingement of multiple orthogonal jets. While it is possible to achieve high target surface heat transfer with this configuration, the associated pressure drop is generally high and the cooling efficiency low. Furthermore, especially in large impingement arrays, the build-up of cross flow from upstream jets can be significant and result in deflection of downstream impingement jets reducing the resultant heat transfer coefficient distribution. This paper presents a computational and experimental investigation into the use of shaped elliptical or elongated circular impingement holes designed to improve the penetration of the impinging jet across the coolant passage. This is of particular interest where there is significant cross flow. Literature review and computational investigations are used to determine the optimum aspect ratio of the impingement jet. The improved heat transfer performance of the modified design is then tested in an experimental rig with varying degrees of cross flow at engine representative conditions. In all cases a 16% increase in the Nusselt number on the impingement target surface in the downstream half of the cooling passage was achieved. Under the first 4 impingement holes Nusselt number enhancement of enhancement of 28–77% was achieved provided no additional cross flow was present in the passage. When appropriately aligned, a significant reduction in the stress concentration factor caused by the addition of a hole can be achieved using this design.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In