Full Content is available to subscribers

Subscribe/Learn More  >

Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling

[+] Author Affiliations
Satoshi Hada

Mitsubishi Heavy Industries, Ltd., Takasago, Hyogo, Japan

Karen A. Thole

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. GT2006-91067, pp. 839-848; 10 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


Currently, turbines are being designed to operate with increasing inlet temperatures to improve the engine’s performance. To reduce NOx combustion, combustors are being designed to provide flat pattern factors. For these reasons, the endwall of the first stage vane is under severe heat transfer conditions. Film-cooling is one of the most effective cooling methods for the endwall of the vane. This paper presents results from a computational study of a film-cooled endwall. The endwall design considers both an upstream slot and a mid-passage slot, whereby the slot considered is both aligned and misaligned with respect to the endwall. Results indicate reasonable agreement between computational predictions and experimental measurements of adiabatic effectiveness levels along the vane endwall. The results of this study show the mid-passage slot has a large effect on the endwall film coverage. In addition, the relative height of the upstream slot to the downstream endwall is important to consider for improving the cooling benefit from the leakage flow between the combustor and turbine.

Copyright © 2006 by ASME
Topics: Cooling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In