Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Measurements in a Rotating Equilateral Triangular Channel With Various Rib Arrangements

[+] Author Affiliations
Dong Hyun Lee, Dong-Ho Rhee, Hyung Hee Cho

Yonsei University, Seoul, Korea

Hee-Koo Moon

Solar Turbines Incorporated, San Diego, CA

Paper No. GT2006-90973, pp. 777-785; 9 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


The present research investigates the heat transfer characteristics in an equilateral triangular channel to simulate the leading edge cooling passage of a gas turbine blade. The experiments are conducted for the stationary and rotating ribbed channel with three different attack angles (45°, 90° and 135°). Square ribs are installed in a staggered manner on the pressure and suction side surfaces of the channel. The rib height to channel hydraulic diameter ratio (e/Dh ) is 0.079 and the rib-to-rib pitch (p) is 8 times of the rib height. To measure regional-averaged heat transfer coefficients in the channel, two rows of copper blocks with heaters are installed on each surface. The rotation number ranges from 0.0 to 0.1 for the fixed Reynolds number of 10,000. Inlet coolant-to-surface density ratio is about 0.2. For the channel with 90° ribs, the heat transfer rates of all regions have similar values for stationary case. However, for the rotating channel, heat transfer coefficients on the pressure side surface are significantly increased while the suction side surface has quite low heat transfer coefficients due to a single rotating secondary flow induced by Coriolis force. For the channel with angled rib arrangements, a pair of counter-rotating vortices is induced by the angled rib arrangements. High heat transfer coefficients are obtained on the regions near the inner wall for 45° angled ribbed channel and near the leading edge for the 135° angled ribbed channel. The heat transfer coefficients in rotating channel with angled ribs are almost the same as those of stationary case for the tested conditions because the secondary flow dominates the heat transfer. The channel with angled ribs consistently yields better thermal performance than the transverse ribbed channel for the test conditions of the present study.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In