0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Mist Film Cooling at Gas Turbine Operating Conditions

[+] Author Affiliations
Ting Wang, Xianchang Li

University of New Orleans, New Orleans, LA

Paper No. GT2006-90742, pp. 611-621; 11 pages
doi:10.1115/GT2006-90742
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

Air film cooling has been successfully used to cool gas turbine hot sections for the last half century. A promising technology is proposed to enhance air film cooling with water mist injection. Numerical simulations have shown that injecting a small amount of water droplets into the cooling air improves film-cooling performance significantly. However, previous studies were conducted at conditions of low Reynolds number, temperature, and pressure to allow comparisons with experimental data. As a continuous effort to develop a realistic mist film cooling scheme, this paper focuses on simulating mist film cooling under typical gas turbine operating conditions of high temperature and pressure. The mainstream flow is at 15 atm with a temperature of 1561K. Both 2-D and 3-D cases are considered with different hole geometries on a flat surface, including a 2-D slot, a simple round hole, a compound-angle hole, and fan-shaped holes. The results show that 10%–20% mist (based on the coolant mass flow rate) achieves 5%–10% cooling enhancement and provides an additional 30–68K adiabatic wall temperature reduction. Uniform droplets of 5 to 20 μm are used. The droplet trajectories indicate the droplets tend to move away from the wall, which results in a lower cooling enhancement than under low pressure and temperature conditions. The commercial software Fluent (v. 6.2.16) is adopted in this study, and the standard k-ε model with enhanced wall treatment is adopted as the turbulence model.

Copyright © 2006 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In