Full Content is available to subscribers

Subscribe/Learn More  >

Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer

[+] Author Affiliations
Jongmyung Park, Matt Goodro, Phil Ligrani

University of Utah, Salt Lake City, UT

Mike Fox, Hee-Koo Moon

Solar Turbines Incorporated, San Diego, CA

Paper No. GT2006-90628, pp. 581-597; 17 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


Limited available data suggest a substantial impact of Mach number on the heat transfer from an array of jets impinging on a surface at fixed Reynolds number. Many jet array heat transfer correlations currently in use are based upon tests in which the jet Reynolds number was varied by varying the jet Mach number. Hence, this data may be inaccurate for high Mach numbers. Results from the present study are new and innovative because they separate the effects of jet Reynolds number and jet Mach number for the purposes of validating and improving correlations which are currently in use. The present study provides new data on the separate effects of Reynolds number and Mach number for an array of impinging jets in the form of discharge coefficients, local and spatially-averaged Nusselt numbers, and local and spatially-averaged recovery factors. The data are unique because data are given for impingement jet Mach numbers as high as 0.60 and impingement jet Reynolds numbers as high as 60,000, and because the effects of Reynolds number and Mach number are separated by providing data at constant Reynolds number as the Mach number is varied, and data at constant Mach number as the Reynolds number is varied. As such, the present data are given for experimental conditions not previously examined, which are outside the range of applicability of current correlations.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In